Trust-inspiring explanation interfaces for recommender systems

نویسندگان

  • Pearl Pu
  • Li Chen
چکیده

A recommender system’s ability to establish trust with users and convince them of its recommendations, such as which camera or PC to purchase, is a crucial design factor especially for e-commerce environments. This observation led us to build a trust model for recommender agents with a focus on the agent’s trustworthiness as derived from the user’s perception of its competence and especially its ability to explain the recommended results. We present in this article new results of our work in developing design principles and algorithms for constructing explanation interfaces. We show the effectiveness of these principles via a significant-scale user study in which we compared an interface developed based on these principles with a traditional one. The new interface, called the organization interface where results are grouped according to their tradeoff properties, is shown to be significantly more effective in building user trust than the traditional approach. Users perceive it more capable and efficient in assisting them to make decisions, and they are more likely to return to the interface. We therefore recommend designers to build trust-inspiring interfaces due to their high likelihood to increase users’ intention to save cognitive effort and the intention to return to the recommender system. 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Merging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems

In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...

متن کامل

Explanations In Recommender Systems: Overview And Research Approaches

Recommender systems are software tools that supply users with suggestions for items to buy. However, it was found that many recommender systems functioned as black boxes and did not provide transparency or any information on how their internal parts work. Therefore, explanations were used to show why a specific recommendation was provided. The importance of explanations has been approved in a n...

متن کامل

یک سامانه توصیه‎گر ترکیبی با استفاده از اعتماد و خوشه‎بندی دوجهته به‎منظور افزایش کارایی پالایش‎گروهی

In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...

متن کامل

Trust Building in Recommender Agents

Trust has long been regarded as an important factor influencing users’ decision to buy a product in an online shop or to return to the shop for more product information. However, most notions of trust focus on the aspects of benevolence and integrity, and less on competence. Although benefits clearly exist for websites to employ competent recommender agents, the exact nature of these benefits t...

متن کامل

A Novel Trust Computation Method Based on User Ratings to Improve the Recommendation

Today, the trust has turned into one of the most beneficial solutions to improve recommender systems, especially in the collaborative filtering method. However, trust statements suffer from a number of shortcomings, including the trust statements sparsity, users' inability to express explicit trust for other users in most of the existing applications, etc. Thus to overcome these problems, this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Knowl.-Based Syst.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2007